
���������&�/�/�9�9�9������������������������������"

���������������	

���������������������������	�
����������������������������������������������������������������������������������������������	�
�������������������������	�
�	�����	������������
���������������	�
������������������
�	���	�������
�	�	���	��������������������� ���	���!��������������

�
���	���	����������������	������������������������������������������������������ ��

�������������	����������������������������������������������������������������������� 

�!�����	���������"�����������#�������������������"�$�������"���������������"����������	��������

�%���&���'�����������������������������������������'�����������(�"�����"�����(�"���������������������	���������������'�����)�	���������'�����*�����+��������������������

���������������,���!���������#������������������� �����"���	���#�	�$�������������%�	�&�'�������������������	�
�������������������������	�
�	�����	������������

���������������	�
������������������
�	���	�������
�	�	���	��������������������� ���	���!�����������������(�
����	�	�)�����*�#�������������������-�.� ��

���������&�������������"����

�*���#���	�������(�������������������������	�����������#�������#��

�����������&�/�/�������������"�/�0�����0�����1�/�2�1�3���-�����-�����4�2�4�5�0�����6��

�(���7�����8���������#���������"�������������9�����:�����#�����������������������"�������������	�
��������������������������

�����������������	�������������	�����	������������������������
���������&�/�/�	�������:�
�������/��������������;�	�����<�	�����&���
���&�����&���=�&����������4�3�5�.�3



Modular Graphical Ontology Engineering
Evaluated

Cogan Shimizu1[0000� 0003� 4283� 8701] � , Karl Hammar 2[0000� 0001� 8767� 4136] ,
and Pascal Hitzler1[0000� 0001� 6192� 3472]

1 Data Semantics Lab, Kansas State University, USA
f coganmshimizu, phitzler g@ksu.edu

2 J•onk•oping AI Lab, J•onk•oping University, Sweden
karl.hammar@ju.se

Abstract. Ontology engineering is traditionally a complex and time-
consuming process, requiring an intimate knowledge of description logic
and predicting non-local e�ects of di�erent ontological commitments.
Pattern-based modular ontology engineering, coupled with a graphical
modeling paradigm, can help make ontology engineering accessible to
modellers with limited ontology expertise. We have developed CoMo-
dIDE, the Comprehensive Modular Ontology IDE, to develop and ex-
plore such a modeling approach. In this paper we present an evaluation
of the CoModIDE tool, with a set of 21 subjects carrying out some
typical modeling tasks. Our �ndings indicate that using CoModIDE im-
proves task completion rate and reduces task completion time, compared
to using standard Prot�eg�e. Further, our subjects report higher System
Usability Scale (SUS) evaluation scores for CoModIDE, than for Prot�eg�e.
The subjects also report certain room for improvements in the CoMo-
dIDE tool { notably, these comments all concern comparatively shallow
UI bugs or issues, rather than limitations inherent in the proposed mod-
eling method itself. We deduce that our modeling approach is viable, and
propose some consequences for ontology engineering tool development.

1 Introduction

Building a knowledge graph, as with any complex system, is an expensive en-
deavor, requiring extensive time and expertise. For many, the magnitude of re-
sources required for building and maintaining a knowledge graph is untenable.
Yet, knowledge graphs are still poised to be a signi�cant disruptor in both the
private and public sectors [17]. As such, lowering the barriers of entry is very
important. More speci�cally, it will be necessary to increase the approachability
of knowledge graph development best practices, thus reducing the need for dedi-
cated expertise. Of course, we do not mean imply thatno expertise is desirable,
simply that a dedicated knowledge engineer may be out of reach for small �rms
or research groups. For this paper, we focus on the best practices according
to the eXtreme design (XD) [4] and modular ontology modeling (MOM) [12]
paradigms. To this point, we are interested in how tooling infrastructure can



2 C. Shimizu, K. Hammar, P. Hitzler

improve approachability. In the context of our chosen paradigms and focus on
tooling infrastructure, approachability may be proxied by the amount of e�ort
to produce correct and reasonable output, where e�ort is a function of tool-user
experience (UX) and time taken. Furthermore, by using tooling infrastructure
to encapsulate best practices, it improves the maintainability and evolvability
accordingly.

In particular, this paper investigates the use of a graphical modeling tool that
encapsulates the pattern-driven philosophies of XD and MOM. To do so, we have
developed CoModIDE (theComprehensive Modular Ontology IDE{ pronounced
\commodity"), a plugin for the popular ontology editing platform, Prot�eg�e [16].
In order to show that CoModIDE improves approachability of knowledge graph
development, we have formulated for the following hypotheses.

H1. When using CoModIDE, a user takes less time to produce correct and rea-
sonable output, than when using Protege.

H2. A user will �nd CoModIDE to have a higher SUS score than when using
Protege alone.

The remainder of this paper is organized as follows. Section 2 presents Co-
ModIDE. Section 3 discusses related work on graphical modeling and ontology
design pattern use and development. We present our experimental design in
Section 4, our results in Section 5, and a discussion of those results and their
implications in Section 6. Finally, Section 7 concludes the paper, and suggests
possibilities for future research.

2 CoModIDE: A Comprehensive Modular Ontology IDE

2.1 Motivator: A Graphical and Modular Ontology Design Process

CoModIDE is intended to simplify ontology engineering for users who are not
ontology experts. Our experience indicates that such non-experts rarely need or
want to make use of the full set of language constructs that OWL 2 provides;
instead, they typically, at least at the outset, want to model rather simple se-
mantics. Such users (and, indeed also more advanced users) often prefer to do
initial modeling in pair or group settings, and to do it graphically { whether that
be on whiteboards, in vector drawing software, or even on paper. This further
limits the modeling constructs to those that can be expressed somewhat intu-
itively using graphical notations (such that all involved participants, regardless
of their ontology engineering skill level, can understand and contribute).

This initial design process typically iterates rapidly and uidly, with the
modeling task being broken down into individual problems of manageable com-
plexity 3; candidate solutions to these problem pieces being drawn up, analysed

3 We �nd that the size of such partial solutions typically �t on a medium-sized white-
board; but whether this is a naturally manageable size for humans to operate with,
or whether it is the result of constraints of or conditioning to the available tooling,
i.e., the size of the whiteboards often mounted in conference rooms, we cannot say.



Modular Graphical Ontology Engineering Evaluated 3

and discussed; a suitable solution selected and documented; and the next step
of the problem then tackled. Many times, the formalization of the developed
solution into an OWL ontology is carried out after-the-fact, by a designated on-
tologist with extensive knowledge of both the language and applicable tooling.
However, this comes at a cost, both in terms of hours expended, and in terms
of the risk of incorrect interpretations of the previously drawn graphical repre-
sentations (the OWL standard does not de�ne a graphical notation syntax, so
such representations are sometimes ambiguous).

The design process discussed above mirrors the principles ofeXtreme Design
(XD) [4]: working in pairs, breaking apart the modeling task into discrete prob-
lems, and iterating and refactoring as needed. XD also emphasizes the use of
Ontology Design Patterns(ODPs) as solutions to frequently recurring modeling
problems. Combining ODP usage with the graphical modeling process discussed
above (speci�cally with the need to in an agile manner refactor and modify
partial solutions) requires that the partial solutions (or modules) derived from
ODPs are annotated, such that they can at a later time be isolated for study,
modi�ed, or replaced.

In summary it would be useful for our target user group if there were tool-
ing available that supported 1) intuitive and agile graphical modeling, directly
outputting OWL ontologies (avoiding the need for the aforementioned post-
processing), and 2) reuse of ODPs to create and maintain ODP-based modules.
Hence, CoModIDE.

2.2 Design and Features

The design criteria for CoModIDE, derived from the requirements discussed
above, are as follows:

{ CoModIDE should support visual-�rst ontology engineering, based on a
graph representation of classes, properties, and datatypes. This graphical
rendering of an ontology built using CoModIDE should be consistent across
restarts, machines, and operating system or Prot�eg�e versions.

{ CoModIDE should support the type of OWL 2 constructs that can be easily
and intuitively understood when rendered as a schema diagram. To model
more advanced constructs (unions and intersections in property domains or
ranges, the property subsumption hierarchy, property chains, etc), the user
can drop back into the standard Prot�eg�e tabs.

{ CoModIDE should embed an ODP repository. Each included ODP should
be free-standing and completely documented. There should be no external
dependency on anything outside of the user's machine4. If the user wishes,
they should be able to load a separately downloaded ODP repository, to
replace or complement the built-in one.

4 Our experience indicates that while our target users are generally enthusiastic about
the idea of reusing design patterns, they are quickly turned o� of the idea when they
are faced with patterns that lack documentation or that exhibit link rot.



4 C. Shimizu, K. Hammar, P. Hitzler

Fig. 1: CoModIDE User Interface featuring 1) the schema editor, 2) the pattern
library, and 3) the con�guration view.

{ CoModIDE should support simple composition of ODPs; patterns should
snap together like Lego blocks, ideally with potential connection points be-
tween the patterns lighting up while dragging compatible patterns. The re-
sulting ontology modules should maintain their coherence and be treated like
modules in a consistent manner across restarts, machines, etc. A pattern or
ontology interface concept will need be developed to support this.
CoModIDE is developed as a plugin to the versatile and well-established

Prot�eg�e ontology engineering environment. The plugin provides three Prot�eg�e
views, and a tab that hosts these views (see Figure 1). Theschema editor view
provides an a graphical overview of an ontology's structure, including the classes
in the ontology, their subclass relations, and the object and datatype properties
in the ontology that relate these classes to one another and to datatypes. All of
these entities can be manipulated graphically through dragging and dropping.
The pattern library view provides a set of built-in ontology design patterns,
sourced from various projects and from the ODP community wiki5. A user can
drag and drop design patterns from the pattern library onto the canvas to in-
stantiate those patterns as modules in their ontology. Thecon�guration view lets
the user con�gure the behavior of the other CoModIDE views and their compo-
nents. For a detailed description, we refer the reader to the video walkthrough
on the CoModIDE webpage6. We also invite the reader to download and install
CoModIDE themselves, from that same site.

When a pattern is dragged onto the canvas, the constructs in that pattern
are copied into the ontology (optionally having their IRIs updated to corre-
spond with the target ontology namespace), but they are also annotated using

5 http://ontologydesignpatterns.org/
6 https://comodide.com

http://ontologydesignpatterns.org/
https://comodide.com


Modular Graphical Ontology Engineering Evaluated 5

Fig. 2: Factors a�ecting conceptual modeling, from [9].

the OPLa vocabulary, to indicate 1) that they belong to a certain pattern-based
module, and 2) what pattern that module implements. In this way module prove-
nance is maintained, and modules can, provided that tool support exists (see
Section 7) be manipulated (folded, unfolded, removed, annotated) as needed.

3 Related Work

Graphical Conceptual Modeling [9] proposes three factors (see Figure 2)
that inuence the construction of a conceptual model, such as an ontology;
namely, the person doing the modeling (both their experience and know-how,
and their interpretation of the world, of the modeling task, and of model quality
in general), the modeling grammar (primarily its expressive power/completeness
and its clarity), and the modeling process(including both initial conceptualisa-
tion and subsequent formal model-making). Crucially, only the latter two fac-
tors can feasibly be controlled in academic studies. The related work discussed
below tends to focus on one or the other of these factors, i.e., studying the
characteristics of a modeling languageor a modeling process. Our work on Co-
ModIDE straddles this divide: employing graphical modeling techniques reduces
the grammar available from standard OWL to those fragments of OWL that can
be represented intuitively in graphical format; employing design patterns a�ects
the modeling process.

Graphical modeling approaches to conceptual modeling have been extensively
explored and evaluated in �elds such as database modeling, software engineering,
business process modeling, etc. Studying model grammar, [22] compares EER no-
tation with an early UML-like notation from a comprehensibility point-of-view.
This work observes that restrictions are easier to understand in a notation where
they are displayed coupled to the types they apply to, rather than the relations
they range over. [7] proposes a quality model for EER diagrams that can also
extend to UML. Some of the quality criteria in this model, that are relevant in
graphical modeling of OWL ontologies, includeminimality (i.e., avoiding dupli-
cation of elements),expressiveness(i.e., displaying all of the required elements),
and simplicity (displaying no more than the required elements).

[1] study the usability of UML, and report that users perceive UML class
diagrams (closest in intended use to ontology visualizations) to be less easy-to-



6 C. Shimizu, K. Hammar, P. Hitzler

use than other types of UML diagrams; in particular, relationship multiplicities
(i.e., cardinalities) are considered frustrating by several of their subjects. UML
displays such multiplicities by numeric notation on the end of connecting lines
between classes. [13] analyses UML and argues that while it is a useful tool
in a design phase, it is overly complex and as a consequence, su�ers from re-
dundancies, overlaps, and breaks in uniformity. [13] also cautions against using
di�cult-to-read and -interpret adornments on graphical models, as UML allows.

Various approaches have been developed for presenting ontologies visually
and enabling their development through a graphical modeling interface, the most
prominent of which is probably VOWL , the Visual Notation for OWL Ontologies
[15], and its implementation viewer/editor WebVOWL [14,23]. VOWL employs a
force-directed graph layout (reducing the number of crossing lines, increasing leg-
ibility) and explicitly focuses on usability for users less familiar with ontologies.
As a consequence of this, VOWL renders certain structures in a way that, while
not formally consistent with the underlying semantics, supports comprehensi-
bility; for instance, datatype nodes and owl:Thing nodes are duplicated across
the canvas, so that the model does not implode into a tight cluster around such
often used nodes. It has been evaluated over several user studies with users rang-
ing from laymen to more experienced ontologists, with results indicating good
comprehensibility. CoModIDE has taken inuence from VOWL, e.g., in how we
render datatype nodes. However, in a collaborative editing environment in which
the graphical layout of nodes and edges needs to remain consistent for all users,
and relatively stable over time, we �nd the force-directed graph structure (which
changes continuously as entities are added/removed) to be unsuitable.

For such collaborative modeling use cases, the commercial o�eringGrafo7

o�ers a very attractive feature set, combining the usability of a VOWL-like
notation with stable positioning, and collaborative editing features. Crucially,
however, Grafo does not support pattern-based modular modeling, and as a web-
hosted service, does not allow for customizations or plugins that would support
such a modeling paradigm.

CoModIDE is partially based on the Prot�eg�e plugin OWLAx , as presented in
[19]. This plugin supports one-way translation from graphical schema diagrams
drawn by the user, into OWL ontology classes and properties; however, it does
not render such constructs back into a graphical form. There is thus no way of
continually maintaining and developing an ontology using only OWLAx. There
is also no support for design pattern reuse in this tool.

Ontology Design Patterns Ontology Design Patterns (ODPs) were intro-
duced by Gangemi [8] and Blomqvist & Sandkuhl [2] in 2005, as a means of sim-
plifying ontology development. ODPs are intended to guide non-expert users, by
packaging best practices into reusable blocks of functionality, to be adapted and
specialised by those users in individual ontology development projects. Presutti
et al.[18] de�nes a typology of ODPs, including patterns for reasoning, nam-
ing, transformation, etc. The eXtreme Design methodology [4] describes how

7 https://gra.fo

https://gra.fo


Modular Graphical Ontology Engineering Evaluated 7

ontology engineering projects can be broken down into discrete sub-tasks, to be
solved by using ODPs. Prior studies indicate that the use of ODPs can lower
the number of modeling errors and inconsistencies in ontologies, and that they
are by the users perceived as useful and helpful [3,5].

Applying the XD method and ODPs requires the availability of both high-
quality ODPs, and of tools and infrastructure that support ODP use. Recent
work in this area, by the authors and others, includes XDP, a fork of the
WebProt�eg�e ontology editor [10]; the OPLa annotations vocabulary that mod-
els how ontology concepts can be grouped into modules, and the provenance
of and interrelations between such modules, including to ODPs [11]; and the
MODL library, a curated and specially documented collection of high-quality
patterns for use in many domains [21]. CoModIDE draws inuence from all of
these works, and includes the MODL library as its default pattern library, using
an OPLa-based representation of those patterns.

4 Research Method

Our experiment is comprised of four steps: a survey to collect subject background
data (familiarity with ontology languages and tools), two modeling tasks, and
a follow-up survey to collect information on the usability of both Prot�eg�e and
CoModIDE. The tasks were designed to emulate a common ontology engineering
process, where a conceptual design is developed and agreed upon by whiteboard
prototyping, and a developer is then assigned to formalizing the resulting white-
board schema diagram into an OWL ontology.

During each of the modeling tasks, participants are asked to generate area-
sonable and correct OWL �le for the provided schema diagram. In order to
prevent a learning e�ect, the two tasks utilize two di�erent schema diagrams.
To prevent bias arising from di�erences in task complexity, counterbalancing
was employed (such that half the users performed the �rst task with standard
Prot�eg�e and the second task with CoModIDE, and half did the opposite). The
correctness of the developed OWL �les, and the time taken to complete each
tasks, were recorded (the latter was however, for practical reasons, limited to 20
minutes per task).

The following sections provide a brief overview of each the steps. The source
material for the entire experiment is available online8.

Introductory Tutorial As previously mentioned, our intent is to improve
the approachability of ontology modeling by making it more accessible to those
without expertise in knowledge engineering. As such, when recruiting our par-
ticipants for this evaluation, we did not place any requirements on ontology
modeling familiarity. However, to establish a shared baseline knowledge of foun-
dational modeling concepts (such as one would assume participants would have
in the situation we try to emulate, see above), we provided a 10 minute tutorial

8 http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887

http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-47887


8 C. Shimizu, K. Hammar, P. Hitzler

Fig. 3: Task A Schema Diagram

on ontologies, classes, properties, domains, and ranges. The slides used for this
tutorial may be found online with the rest of the experiment's source materials.

a priori Survey The purpose of thea priori survey was to collect information
relating to the participants base level familiarity with topics related to knowledge
modeling, to be used as control variables in later analysis. We used a 5-point
Likert scale for rating the accuracy of the following statements.

CV1. I have done ontology modeling before.
CV2. I am familiar with Ontology Design Patterns.
CV3. I am familiar with Manchester Syntax.
CV4. I am familiar with Description Logics.
CV5. I am familiar with Prot�eg�e.

Finally, we asked the participants to describe their relationship to the test leader,
(e.g. student, colleague, same research lab, not familiar).

Modeling Task A In Task A, participants were to develop an ontology to
model how an analyst might generate reports about an ongoing emergency. The
scenario identi�ed two design patterns to use:

{ Provenance : to track who made a report and how;
{ Event : to capture the notion of an emergency.


















	Modular Graphical Ontology Engineering Evaluated

