
TEMPLATE-BASED CONTENT
ODP INSTANTIATION

KARL HAMMAR & VALENTINA PRESUTTI

TEMPLATE-BASED CONTENT ODP INSTANTIATION

OVERVIEW

▸ Established methods of CODP instantiation.

▸ Our experiences of using CODPs in projects.

▸ The alternative: template-based instantiation.

▸ Benefits/drawbacks.

▸ Instantiation method.

▸ Evaluation.

▸ Tool Support.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

ESTABLISHED METHODS

▸ eXtreme Design.

▸ Falbo et al. / Rui et al.

▸ OPPL.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

CONTENT PATTERN USE WITH EXTREME DESIGN

▸ XD: ”a family of methods and associated tools, based on the
application, exploitation, and definition of Ontology Design Patterns
(ODPs) for solving ontology development issues”.

▸ ODPs are small, autonomous, non-trivial, OWL ontologies.

▸ Operations: import, specialization, composition, etc.

▸ XD workflow emphasis: agile, iterative, pairs, testing, ODPs.

▸ XD workflow core steps: find ODP, instantiate ODP, integrate solution.

▸ Instantiation typically performed via specialization (though cloning
mentioned in passing).

TEMPLATE-BASED CONTENT ODP INSTANTIATION

APPLICATION BY EXTENSION OR ANALOGY

▸ Falbo et al., Ruy et al.: Foundational Ontology Patterns
(FOP) vs Domain-related Ontology Patterns (DROP),
focusing on conceptual design issue and its solution (i.e.,
analogous to Fowler’s Analysis Patterns).

▸ FOPs reused by analogy (i.e. ,reproduction of solution),
DROPs reused by extension (i.e., specialization).

▸ Our view: FOP-analogy / DROP-extension pairing may be
to restrictive.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

ENCODING CODPS WITH OPPL

▸ Ontology Pre-Processing Language — macro language enabling
rapid transformation of large ontologies.

▸ Macro engine adds/removes entities/axioms based on variables set
by user and conditions evaluated against ontology.

▸ CODPs can be written as OPPL macros - unbound variables filled by
user indicate new entities to create or existing entities to specialize.

▸ Tooling also includes annotation properties to track CODP macro
usage in target ontologies.

▸ Promising technique that has seen limited uptake.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

OUR EXPERIENCES OF CODP USE - VALCRI

▸ Project focus: Visual Analytics capability for law
enforcement analysts, operating over integrated
heterogenous data sources. Triple store backend.

▸ Goal 1: Easily understandable ontologies, to be used and
co-developed by software developers.

▸ Goal 2: Ontologies easy to modify for deployment in
different contexts.

TEXT

OUR EXPERIENCES OF CODP USE - VALCRI

▸ Foundational entities from transitive import closure
make no sense in target domain. ”What is this Situation
class? I don’t want it!”

▸ CODP labelling to generic for target domain: ”Why is
this thing called Agent? We always call it Nominal in
policing!”

▸ Devs uncomfortable modifying ontologies due to
lacking confidence that they understood initial design
(largely due to the above mentioned challenges)

TEXT

OUR EXPERIENCES OF CODP USE - IMSK

▸ Goals: Reconfigurable area security system, ontologies as pluggable
configuration modules.

▸ Experiences:

▸ Some users (quite intensely) disliked transitive import closure as it
added concepts they did not ask for nor understand value of.

▸ Other users liked transitive import, as it validated the soundness of
their design against existing known good practice.

▸ When set loose to implement w/o method guidance, users
consistently used whiteboard prototyping and recreated CODP
structure in tooling from scratch. owl:imports was NEVER used.

TEXT

OUR EXPERIENCES OF CODP USE - E-CARE@HOME

▸ Goal: improve home healthcare for elderly via IoT / Smart home and data
integration for reminders, recommendations, alerts, etc. Ontologies for
device configuration and data integration.

▸ Resulting ontologies contain high-level entities that are unused in target
domain.

▸ Lead dev, to the question of whether import-less CODP instantiation or
partial CODP instantiation would be useful:

▸ ”Definitely useful. I spent a considerable amount of time to find top- level
classes that provide the required links to already designed ones. The lack
of such tools is sensed. It can also decrease the rate of errors or
inconsistencies in our design.”

TEMPLATE-BASED CONTENT ODP INSTANTIATION

EXPERIENCES SUMMARIZED

▸ Some (not all!) users dislike import of high-level concepts, several
steps removed from the domain specifics, into their target model.

▸ Such users tend to be practitioners and software developers,
rather than researchers or knowledge engineers.

▸ Some users dislike the generic naming/labeling provided by
reused CODPs.

▸ Some users would prefer the ability to instantiate CODPs partially
rather than in whole (which is not possible using owl:imports).

TEMPLATE-BASED CONTENT ODP INSTANTIATION

TEMPLATE-BASED INSTANTIATION

▸ Idea not new: see previous slides on earlier work.

▸ Our contribution:

▸ Discussion on benefits/drawbacks

▸ Suggested practical method

▸ Initial evaluation of feasibility and utility

TEMPLATE-BASED CONTENT ODP INSTANTIATION

BENEFITS & DRAWBACKS

▸ Benefit: Alleviates issues previously discussed (no un-needed domain-level concepts,
no large import closure including foundational concepts).

▸ Benefit: Reduces risk of breakage, as CODP instantiations are wholly contained within
target ontology namespace (also simplifies tooling implementation).

▸ Benefit: Reduces barrier-to-entry of future refactoring and debugging, ontology
engineer ”owns” their whole implementation module.

▸ Benefit: Validation with domain experts simplified - no foreign terms that cause
confusion.

▸ Drawback: No instant interoperability between multiple instantiations of same CODP —
alignment and OWL reasoning needed.

▸ Drawback: Higher-level classes in CODP may need to be instantiated multiple times in
target ontology, increasing risk of modeling mistakes and inconsistency.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

METHOD (STEP 1)

‣ Copy CODP leaf classes into
subclasses of owl:Thing in target
module. If two leaf classes in
source CODP have some shared
parent beneath owl:Thing level,
copy least common consumer also
as shared parent to the copied
leaves.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

METHOD (STEP 2)

▸ Copy object or datatype properties
that have as domain or range the
classes copied above. For object
properties: try to narrow any
unmatched half of the domain/
range pair to the least common
subsumer or if non-existent, leaf
level.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

METHOD (STEP 3)

▸ Copy (and similarly to step 2,
narrow if necessary) any properties
involved in class restrictions on
classes copied in step 1 — use the
copied properties to create
equivalent restrictions in the target
module.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

METHOD (STEP 4)

▸ Merge the resulting structure with
existing entities in the target
module using suitable ontology
matching techniques to find
candidate matches.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

EDGE CASES

▸ The proposed method has worked well in initial testing with CODPs
from the portal. However, there are many cases where it would not
work without further refinement:

▸ CODPs where individual leaf classes need to be instantiated twice
or more (e.g., the Place class in the Place CODP, which could be
instantiated both as narrower and broader Place in target module)

▸ When a CODP reuses and specializes higher-level concepts from
another CODP, it might be the case that child CODP classes are
leaves on the same level as classes from the parent CODP (which
are not intended to be instantiated in the child CODP).

TEMPLATE-BASED CONTENT ODP INSTANTIATION

EVALUATION

▸ Constructed two sets of ontology requirements, A and B, in the form of Competency Questions,
Contextual Statements, and Reasoning Requirements.

▸ Based on each requirement set, generated two sibling ontologies using template-based
instantiation and traditional specialization-based instantiation, for a total of four ontologies.

▸ Gave participants three tasks:

1. For requirements set A, answer which out of seven provided CQs that the developed
ontologies fulfill.

2. For requirements set B, answer which out of nine provided CQs that the developed
ontologies fulfill.

3. For requirement set A, modify the two sibling ontologies by adding four object properties,
specializing some of the more generic properties already in place.

▸ Surveyed users on which of the two ontology variants they found easiest to understand (for tasks 1
and 2) and easiest to modify (task 3).

TEMPLATE-BASED CONTENT ODP INSTANTIATION

EVALUATION RESULTS

Task 1 Task 2 Task 3

Template-based easiest 4 2 3

Equally easy/difficult 1 2 0

Specialisation-based easiest 0 0 0

Correct answer rate 83 % 81 %

Responses to tasks 1-2 indicate ease of understanding, task 3 indicates ease of modifying.  
Response rate decreases as not all participants completed all tasks within the workshop time-frame.

TEMPLATE-BASED CONTENT ODP INSTANTIATION

EVALUATION FINDINGS

▸ Among our (admittedly very small) set of respondents, no
one preferred working with results of specialization-based
CODP instantiation.

▸ The previously discussed method for CODP-based
instantiation actually works in practice!

TEMPLATE-BASED CONTENT ODP INSTANTIATION

TOOL SUPPORT

▸ XD for WebProtégé:

▸ http://wp.xd-protege.com

▸ https://github.com/hammar

▸ Features:

▸ ODP Browser & Search

▸ Instantiation Wizard

▸ Visualization with WebVOWL  
(many thanks to the VisualDataWeb
project, including particularly Steffen
Lohmann!)

http://wp.xd-protege.com
https://github.com/hammar

TEXT

CONCLUSIONS

▸ Existing approaches to CODP instantiation are not palatable to all
classes of users.

▸ Template-based instantiation is a promising approach to satisfying
these users’ preferences.

▸ Template-based instantiation also has other benefits, (e.g., self-
containedness providing stability and simplifying tooling
development), as well as disadvantages (e.g., interoperability with
other CODP instantiations)

▸ Steps for implementing template-based instantiation in practice
have been developed and shown to work.

